Turbulence Auto-Pirep System

TAPS

I-CNS Conference, May 2003

Dr. Paul A. Robinson

President, AeroTech

paulrobinson@atr-usa.com

Improved Turbulence Situational Awareness

Developed as part of the Turbulence Element of NASA's Aviation Safety Program

- Complementary technology
- Non flight critical software

The Turbulence Problem

Current turbulence pireps

inconsistent

late

subjective

only "seen" by ATC

Economic impact of turbulence encounters

flight attendant injuries

passenger injuries

operational inefficiencies

NAS inefficiencies

Estimated Costs > \$100M / year

Seamless Hierarchy of Airborne Turbulence Products

- 1. Aircraft hits turbulence.
- 2. If loads are above a threshold then algorithm generates and broadcasts an alert packet:
 - position & time
 - load
 - aircraft parameters from databus

communications infrastructure

- 1. Aircraft receives packet.
- 2. Scales hazard to type & configuration.
- 3. Displays to flight crew (if at or above threshold).

- 1. Packet received on ground & stored in database.
- 2. Presented on map, scaled to pilot's aircraft (if at or above threshold).

Example Operational Scenario Today: Near Convection

- -Convection detected by onboard radar
- Other aircraft in general vicinity
- Turbulence reports received (voice)
- -Turbulence awareness from PIREPS, ATC, AOC/dispatch
- Situational awareness of turbulence limited

Example Scenario & TAPS display concept

- Data received from other aircraft is translated into a turbulence hazard for receiving aircraft.
- Same aircraft may transmit several warnings.
- Hazard warning icons color- coded severe moderate light shown with relative altitude (100's of feet).
- Provides improved situational awareness of turbulence.

Example Operational Scenario Today: Preflight Dispatch

-Region of convection affecting planned flight path (purple line).

 Other aircraft on and around flight path (blue crosses)

 PIREPS relayed to dispatch/AOC/OCC

 Situational awareness of turbulence limited

Example Concept Scenario: Preflight Dispatch

-Region of convection affecting planned flight path (purple line).

- Specific aircraft type, weight, speed, and altitude

- Automated reports from other aircraft scaled to designated aircraft.

 Situational awareness of turbulence improved Type: B 777-200

Weight: 575,000 – 600,000 lbs

Alt: FL 310

Speed: M 0.82

Example Concept Scenario: Preflight Dispatch

-Region of convection affecting planned flight path (purple line).

- Specific aircraft type, weight, speed, and altitude

- Automated reports from other aircraft scaled to designated aircraft.

 Situational awareness of turbulence improved Type: B 737-800

Weight: 130,000 – 150,000 lbs

Alt: FL 260

Speed: M 0.76

Beneficiaries of TAPS

Pilots – corporate & Part 121

Flight Attendants & Passengers

Air Traffic Controllers

Dispatchers

Airlines

TAPS Operational Simulation

TAPS Operational Simulation

Year 1: TAPS Groundstation Implementation

Years 2-3: TAPS Cockpit Implementation

Related Products – Enabling Technologies?

Electronic Flight Bag

Cockpit Weather products

Communications

Airborne Weather Radar

TAPS Development: Results to Date

- FY-02 flight test single aircraft
 - Reporting logic test
 - Comms test 0.52 sec roundtrip

NASA LaRC B-757 Research Aircraft

- Development of operational simulation for system studies.
- 1st Implementation group meeting held.

TAPS Development: 2003-2005

- FY-03 flight test two aircraft flying in trail.
 - Real-time turbulence reports
 - Skyphone/Iridium communications
 - Turbulence hazard prediction on both aircraft.

NASA GRC Lear Jet Research Aircraft

NASA LaRC B-757 Research Aircraf

- Groundstation and cockpit display development.
- System requirements and CONOPS development.
- Further Implementation Group meetings to be held.
- FY-2005 flight evaluation.